--- title: "transform.hazards" author: "Pål Ryalen" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{transform.hazards} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- Transforms cumulative hazard estimates to estimate survival analysis parameters specified by differential equations. We demonstrate how the method works on some commonly studied parameters. ## Parameters We are interested in assessing parameters that solve differential equations driven by cumulative hazards $A$, i.e. \begin{equation}X_t = X_0 + \int_0^t F(X_s) dA_s,\end{equation} where $F = (F_1,F_2,\cdots)$ is Lipschitz, two times continuously differentiable, and satisfies a linear growth bound. Several examples of such parameters can be found in [^fn1] [^fn2]. The main function *pluginEstimate* in this package estimate such parameters. Among other things, *pluginEstimate* has the following input - The increments of the cumulative hazard estimates - The function $F$ - The Jacobian matrices of the columns of $F$, i.e. $J_{F_1},J_{F_2},\cdots$, as a list We illustrate how to provide the correct inputs by use of examples below. ```{r global_options, include=FALSE} knitr::opts_chunk$set(fig.width=7, fig.height=5, fig.path='Figs/', echo=FALSE, warning=FALSE, message=FALSE) library(timereg) library(transform.hazards) ``` ## Survival The survival function $S$ solves a differential equation with initial value 1; \begin{equation} S_t = 1 - \int_0^t S_{s} dA_s.\end{equation} We generate a sample of exponentially distributed survival times with independent censoring, and calculate cumulative hazard estimates ```{r, fig.show='hold',results = "hide",echo=T} n1 <- 300 Samp1 <- rexp(n1,1) cTimes <- runif(n1)*4 Samp1 <- pmin(Samp1,cTimes) isNotCensored <- cTimes != Samp1 startTimes1 <- rep(0,n1) aaMod1 <- aalen(Surv(startTimes1,Samp1,isNotCensored)~1) ``` We want to estimate the survival function. The cumulative hazard estimates are inserted as a time-ordered matrix where each column is an increment of the vector of cumulatie hazard estimates; ```{r, fig.show='hold',results = "hide",echo=T} dA_est1 <- diff(c(0,aaMod1$cum[,2])) hazMatrix <- matrix(dA_est1,nrow=1) ``` In this case, $F$ takes the simple form $F(x) = -x$, and its Jacobian is therefore $J_{F}(x) = -1$. These must be provided as matrix-valued functions; ```{r, fig.show='hold',results = "hide",echo=T} F_survival <- function(X)matrix(-X,nrow=1,ncol=1) F_survival_JacobianList <- list(function(X)matrix(-1,nrow=1,ncol=1)) ``` We obtain plugin estimates of $S$ and its covariance using the call ```{r, fig.show='hold',results = "hide",echo=T} param <- pluginEstimate(n1, hazMatrix, F_survival, F_survival_JacobianList,matrix(1,nrow=1,ncol=1),matrix(0,nrow=1,ncol=1)) ``` Finally, we may plot the results with approximate 95 % confidence intervals ```{r, fig.show='hold', echo=T} times1 <- aaMod1$cum[,1] plot(times1,param$X,type="s",xlim=c(0,4),xlab="t",ylab="",main="Survival") lines(times1,param$X + 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2) lines(times1,param$X - 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2) lines(times1,exp(-times1),col=2) legend("topright",c("estimated","true"),lty=1,col=c(1,2),bty="n") ``` ## Restricted mean survival The restricted mean survival function $R$ solves the system \begin{equation} \begin{pmatrix} S_t \\ R_t \end{pmatrix} = \begin{pmatrix}1 \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} -S_{s} & 0 \\ 0 & S_s \end{pmatrix}d \begin{pmatrix}A_s \\ s \end{pmatrix},\end{equation} where $S$ is the survival function. Here, the colums of $F$, $F_1$ and $F_2$, are given by \begin{equation} F_1(x_1,x_2) = \begin{pmatrix} -x_1 \\ 0 \end{pmatrix}, F_2(x_1,x_2) = \begin{pmatrix} 0 \\ x_1 \end{pmatrix}.\end{equation} The Jacobian matrices are therefore \begin{equation} J_{F_1}(x_1,x_2) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, J_{F_2}(x_1,x_2) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \end{equation} We define these along with initial values below ```{r, fig.show='hold',results = "hide",echo=T} F_restrict <- function(X)matrix(c(-X[1],0,0,X[1]),nrow=2) F_restrict_JacobianList <- list(function(X)matrix(c(-1,0,0,0),nrow=2), function(X)matrix(c(0,0,1,0),nrow=2,byrow=T)) X0_restrict <- matrix(c(1,0),nrow=2) V0_restrict <- matrix(0,nrow=2,ncol=2) ``` The restricted mean survival is a 'regular' (i.e. Lebesgue) integral, and we must therefore provide the time increments. We choose the time interval $[0,4]$ in $10^4$ increments: ```{r, fig.show='hold',results = "hide",echo=T} fineTimes <- seq(0,4,length.out = 1e4+1) tms <- sort(unique(c(fineTimes,times1))) hazMatrix <- matrix(0,nrow=2,ncol=length(tms)) hazMatrix[1,match(times1,tms)] <- dA_est1 hazMatrix[2,] <- diff(c(0,tms)) ``` We obtain plugin estimates using the call (note the last argument that in this example can be used to improve efficiency); ```{r, fig.show='hold',results = "hide",echo=T} param <- pluginEstimate(n1, hazMatrix, F_restrict, F_restrict_JacobianList,X0_restrict,V0_restrict,isLebesgue = 2) ``` We plot the results ```{r, fig.show='hold', echo=T} plot(tms,param$X[2,],type="s",xlim=c(0,4),ylim=c(0,1.5),xlab="t",ylab="",main="Restricted mean survival") lines(tms,param$X[2,] + 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2) lines(tms,param$X[2,] - 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2) lines(tms,1 - exp(-tms),col=2) legend("topleft",c("estimated","true"),lty=1,col=c(1,2),bty="n") ``` ## Relative survival We generate another set of exponentially distributed survival times and compare the two groups. A new matrix of cumulative hazard increments must be created; ```{r, fig.show='hold',results = "hide",echo=T} n2 <- 200 Samp2 <- rexp(n2,1.3) censTimes2 <- runif(n2)*3 Samp2 <- pmin(Samp2,censTimes2) isNotCensored2 <- censTimes2 != Samp2 startTimes2 <- rep(0,n2) aaMod2 <- aalen(Surv(startTimes2,Samp2,isNotCensored2)~1) dA_est2 <- diff(c(0,aaMod2$cum[,2])) times2 <- aaMod2$cum[,1] times <- sort(unique(c(times1,times2))) hazMatrix <- matrix(0,nrow=2,ncol=length(times)) hazMatrix[1,match(times1,times)] <- dA_est1 hazMatrix[2,match(times2,times)] <- dA_est2 ``` The relative survival function $RS$ between groups 1 and 2 solve the equation \begin{equation} RS_t = 1 + \int_0^t \begin{pmatrix} -RS_s & RS_s\end{pmatrix} d\begin{pmatrix} A_s^1 \\ A_s^2 \end{pmatrix}, \end{equation} i.e. $F(x) = (-x,x)$. The Jacobians of the columns of $F$ are $J_{F_1}(x) = -1$, and $J_{F_2}(x) = 1$. We specify these functions as follows: ```{r, fig.show='hold',results = "hide",echo=T} F_relsurv <- function(X)matrix(c(-X,X),nrow=1) F_relsurv_JacobianList <- list(function(X)matrix(-1,nrow=1), function(X)matrix(1,nrow=1)) ``` The estimates are then obtained by the call ```{r, fig.show='hold',results = "hide",echo=T} param <- pluginEstimate(n1+n2, hazMatrix, F_relsurv, F_relsurv_JacobianList,matrix(1,nrow=1,ncol=1),matrix(0,nrow=1,ncol=1)) ``` We may plot the results with approximate 95% confidence intervals ```{r, fig.show='hold', echo=T} plot(times,param$X,type="s",xlim=c(0,4),ylim=c(-0.5,4),xlab="t",ylab="",main="Relative survival") lines(times,param$X + 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2) lines(times,param$X - 1.96 * sqrt(param$covariance[1,1,]),type="s",lty=2) lines(times,exp(-times*(1/1.3 - 1)),col=2) legend("topleft",c("estimated","true"),lty=1,col=c(1,2),bty="n") ``` ## Cumulative incidence We may be in a situation with two competing risks. The cumulative incidences $C^1,C^2$ solve the system \begin{equation} \begin{pmatrix} S_t \\ C_t^1 \\ C_t^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} -S_s & -S_s \\ S_s & 0 \\ 0 & S_s \end{pmatrix} d \begin{pmatrix} A^1_s \\ A^2_s \end{pmatrix}, \end{equation} where $S$ is the survival. The first columns of $F$ are \begin{equation}F_1(x_1,x_2,x_2) = \begin{pmatrix} -x_1 \\ x_1 \\ 0 \end{pmatrix}, F_2(x_1,x_2,x_2) = \begin{pmatrix} -x_1 \\ 0 \\ x_1 \end{pmatrix} \end{equation} The reader may verify that the Jacobian matrix of $F_1$ and $F_1$ are \begin{equation} J_{F_1}(x_1,x_2,x_3) = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , J_{F_2}(x_1,x_2,x_3) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \end{equation} We specify the function $F$ and the list of the Jacobian matrices below, along with the initial values: ```{r, fig.show='hold',results = "hide",echo=T} F_cuminc <- function(X)matrix(c(-X[1],-X[1],X[1],0,0,X[1]),nrow=3,byrow=T) F_cuminc_JacobianList <- list(function(X)matrix(c(-1,0,0,1,0,0,0,0,0),nrow=3,byrow=T), function(X)matrix(c(-1,0,0,0,0,0,1,0,0),nrow=3,byrow=T)) X0_cuminc <- matrix(c(1,0,0),nrow=3) v0_cuminc <- matrix(0,nrow=3,ncol=3) ``` Now for obtaining hazard estimates. We generate survival times first, before sampling two causes of death (and censoring). We then estimate the cause-specific cumulative hazards, and transform the estimates: ```{r, fig.show='hold',results = "hide",echo=T} # Generate the data dfr <- data.frame(from=0,to=rexp(n1+n2,1),from.state = 1) # Adding causes of death (to.state = 2 or 3) and censoring (to.state = 0) dfr$to.state <- sample(c(0,2,3),n1+n2,replace=T,prob=c(0.2,0.2,0.6)) # Obtaining cause-specific cumulative hazard estimates and extracting the increments aamod22 <- aalen(Surv(from,to,to.state %in% c(2)) ~1, data=dfr) aamod33 <- aalen(Surv(from,to,to.state %in% c(3)) ~1, data=dfr) tmss = sort(unique(c(aamod22$cum[,1],aamod33$cum[,1]))) hazMatrix = matrix(0,nrow=2,ncol=length(tmss)) mt1 = match(aamod22$cum[,1],tmss) mt2 = match(aamod33$cum[,1],tmss) hazMatrix[1,mt1] = diff(c(0, aamod22$cum[,2] )) hazMatrix[2,mt2] = diff(c(0, aamod33$cum[,2] )) # Transforming the estimates param <- pluginEstimate(n1+n2,hazMatrix,F_cuminc,F_cuminc_JacobianList,X0_cuminc,v0_cuminc) ``` Finally, we plot the estimates of the cumulative incidences $C^1$ and $C^2$ with confidence intervals: ```{r, fig.show='hold', echo=T} plot(tmss,param$X[2,],type="s",xlim=c(0,4),ylim=c(0,1),xlab="t",ylab="",main="Cumulative incidence") lines(tmss,param$X[2,] + 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2) lines(tmss,param$X[2,] - 1.96 * sqrt(param$covariance[2,2,]),type="s",lty=2) lines(tmss,param$X[3,],type="s",col=3) lines(tmss,param$X[3,] + 1.96 * sqrt(param$covariance[3,3,]),type="s",lty=2,col=3) lines(tmss,param$X[3,] - 1.96 * sqrt(param$covariance[3,3,]),type="s",lty=2,col=3) legend("topleft",c(expression(C^1),expression(C^2)),lty=1,col=c(1,3),bty="n") ``` ## Restricted mean survival -- comparing two groups By re-specifying the ODE system we can compare two groups. We illustrate this in the restricted mean survival example. Consider the system \begin{equation} \begin{pmatrix} R_t^1 \\ R^2 \\ RD \\ S^1 \\ S^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + \int_0^t \begin{pmatrix} S^1_{s} & 0 & 0 \\ S^2_{s} & 0 & 0 \\ S^1_{s} - S^2_{s} & 0 & 0 \\ 0 & -S_s^1 & 0 \\ 0 & 0 & -S_s^2 \end{pmatrix}d \begin{pmatrix}s \\ A_s^1 \\ A_s^2 \end{pmatrix},\end{equation} where $S^i$ is the survival function in group $i$. We specify matrix-valued functions and initial values as before: ```{r, fig.show='hold', echo=T} F_restrict_diff <- function(X)matrix(c(X[4],0,0, X[5],0,0, X[4]-X[5],0,0, 0,-X[4],0, 0,0,-X[5]),nrow=5,byrow=T) F_restrict_diff_JacobianList <- list(function(X)matrix(c(0,0,0,1,0, 0,0,0,0,1, 0,0,0,1,-1, rep(0,10)),nrow=5,byrow=T), function(X)matrix(c(rep(0,18),-1,rep(0,6)),nrow=5,byrow=T), function(X)matrix(c(rep(0,24),-1),nrow=5,byrow=T)) X0_restrict_diff <- matrix(c(0,0,0,1,1),nrow=5) V0_restrict_diff <- matrix(0,nrow=5,ncol=5) ``` We compare RMS for males and females in the *flchain* data set in the *survival* package. Specifying *hazmatrix*: ```{r, fig.show='hold', echo=T} aa_male = aalen(Surv(futime,death==1)~1, data = flchain[flchain$sex=="M",]) aa_female = aalen(Surv(futime,death==1)~1, data = flchain[flchain$sex=="F",]) tms <- sort(unique(c(fineTimes,aa_male$cum[,1], aa_female$cum[,1]))) mt_male = match(aa_male$cum[,1],tms) mt_female = match(aa_female$cum[,1],tms) hazMatrix <- matrix(0,nrow=3,ncol=length(tms)) hazMatrix[1,] <- diff(c(0,tms)) hazMatrix[2,mt_male] <- diff(c(0,aa_male$cum[,2])) hazMatrix[3,mt_female] <- diff(c(0,aa_female$cum[,2])) plugEst <- pluginEstimate(1, hazMatrix, F_restrict_diff, F_restrict_diff_JacobianList,X0_restrict_diff,V0_restrict_diff,isLebesgue = 1) param = list(plugEst=plugEst, tms=tms) ``` Plotting $\hat{RD} = \hat R^1 - \hat R^2$ with 95\% confidence intervals: ```{r, fig.show='hold', echo=T} ylims = c(1.1*min(param$plugEst$X[3,] - 1.96 * sqrt(param$plugEst$covariance[3,3,])), 1.1*max(param$plugEst$X[3,] + 1.96 * sqrt(param$plugEst$covariance[3,3,]))) plot(param$tms,param$plugEst$X[3,],type="s",ylim=ylims,ylab="",main="RMS difference",xlab="years") lines(param$tms,param$plugEst$X[3,] + 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2) lines(param$tms,param$plugEst$X[3,] - 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2) abline(a=0,b=0,col=2) ``` ## Cumulative incidence -- comparing two groups Consider a similar example with differences of cumulative incidence functions \begin{equation} \begin{pmatrix} S^a_t \\ S_t^b \\ C_t^{a,1} \\ C_t^{a,2} \\ C_t^{b,1} \\ C_t^{b,2} \\ CD_t^1 \\ CD_t^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} -S_s^a & -S_s^a & 0 & 0 \\ 0 & 0 & -S_s^b & -S_s^b \\ S_s^a & 0 & 0 & 0 \\ 0 & S_s^a & 0 & 0 \\ 0 & 0 & S_s^b & 0 \\ 0 & 0 & 0 & S_s^b \\ S_s^a & 0 & -S_s^b & 0 \\ 0 & S_s^a & 0 & -S_s^b \end{pmatrix} d \begin{pmatrix} A^{a,1}_s \\ A^{a,2}_s \\ A^{b,1}_s \\ A^{b,2}_s \end{pmatrix}, \end{equation} where $S^a$ is the survival in group $a$ and $S^b$ is the survival in group $b$, and $C^{a,j}$ is the cumulative incidence for cause $j$ in group $a$ and similarly for group $b$. $CD^i = C^{a,i} - C^{b,i}$ is the cumulative incidence difference for cause $i$. We specify the ODE system. ```{r, fig.show='hold', echo=T} F_cuminc_diff <- function(X)matrix( c(-X[1],-X[1],0,0, 0,0,-X[2],-X[2], X[1],0,0,0, 0,X[1],0,0, 0,0,X[2],0, 0,0,0,X[2], X[1],0,-X[2],0, 0,X[1],0,-X[2]) ,nrow=8,byrow=T) F_cuminc_diff_JacobianList <- list(function(X)matrix(c(-1, rep(0,7), rep(0,8), 1, rep(0,7), rep(0,8), rep(0,8), rep(0,8), 1, rep(0,7), rep(0,8)),nrow=8,byrow=T), function(X)matrix(c(-1, rep(0,7), rep(0,8), rep(0,8), 1, rep(0,7), rep(0,8), rep(0,8), rep(0,8), 1, rep(0,7)),nrow=8,byrow=T), function(X)matrix(c(rep(0,8), 0,-1, rep(0,6), rep(0,8), rep(0,8), 0,1, rep(0,6), rep(0,8), 0,-1, rep(0,6), rep(0,8)),nrow=8,byrow=T), function(X)matrix(c(rep(0,8), 0,-1, rep(0,6), rep(0,8), rep(0,8), rep(0,8), 0,1, rep(0,6), rep(0,8), 0,-1, rep(0,6)),nrow=8,byrow=T)) X0_cuminc_diff <- matrix(c(1,1,0,0,0,0,0,0),nrow=8) v0_cuminc_diff <- matrix(0,nrow=8,ncol=8) ``` We inspect cumulative incidences of the competing events PCM, and death without malignancy, in the *mgus2* data set. We compare males and females in this data set. Specifying *hazmatrix*: ```{r, fig.show='hold', echo=T} mgus2$etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) mgus2$event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) fr_M <- mgus2[mgus2$sex == "M",] fr_M$time <- fr_M$etime/12 fr_F <- mgus2[mgus2$sex == "F",] fr_F$time <- fr_F$etime/12 fit_PCM_M = aalen(Surv(time,event=="pcm")~1,data=fr_M) fit_death_M = aalen(Surv(time,event=="death")~1,data=fr_M) fit_PCM_F = aalen(Surv(time,event=="pcm")~1,data=fr_F) fit_death_F = aalen(Surv(time,event=="death")~1,data=fr_F) tms2 = sort(unique(c(fit_PCM_M$cum[,1],fit_PCM_F$cum[,1], fit_death_M$cum[,1],fit_death_F$cum[,1]))) dA_PCM_M = dA_death_M = dA_PCM_F = dA_death_F = rep(0, length(tms2)) dA_PCM_M[match(fit_PCM_M$cum[,1], tms2)] = diff(c(0,fit_PCM_M$cum[,2])) dA_PCM_F[match(fit_PCM_F$cum[,1], tms2)] = diff(c(0,fit_PCM_F$cum[,2])) dA_death_M[match(fit_death_M$cum[,1], tms2)] = diff(c(0,fit_death_M$cum[,2])) dA_death_F[match(fit_death_F$cum[,1], tms2)] = diff(c(0,fit_death_F$cum[,2])) hazMatrix <- matrix(0,nrow=4,ncol=length(tms2)) hazMatrix[1,] <- dA_PCM_M hazMatrix[2,] <- dA_death_M hazMatrix[3,] <- dA_PCM_F hazMatrix[4,] <- dA_death_F plugEst <- pluginEstimate(1, hazMatrix, F_cuminc_diff, F_cuminc_diff_JacobianList,X0_cuminc_diff,v0_cuminc_diff) param = list(plugEst=plugEst, tms=tms2) ``` Plotting $\hat{CD}^1$ and $\hat{CD}^2$ with 95\% confidence intervals: ```{r, fig.show='hold', echo=T} # Colors male_color <- "red" female_color <- "blue" diff_color <- "gray" par(mfrow=c(1,2)) # Plot with colors and labels plot(param$tms, param$plugEst$X[3,],type="s",ylim=c(-0.2,0.9),main="Cum.inc. PCM", ylab="",xlab="Years", col=male_color) lines(param$tms, param$plugEst$X[3,] + 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2, col=male_color) lines(param$tms, param$plugEst$X[3,] - 1.96 * sqrt(param$plugEst$covariance[3,3,]),type="s",lty=2, col=male_color) lines(param$tms, param$plugEst$X[5,],type="s", col=female_color) lines(param$tms, param$plugEst$X[5,] + 1.96 * sqrt(param$plugEst$covariance[5,5,]),type="s",lty=2, col=female_color) lines(param$tms, param$plugEst$X[5,] - 1.96 * sqrt(param$plugEst$covariance[5,5,]),type="s",lty=2, col=female_color) lines(param$tms, param$plugEst$X[7,],type="s", col=diff_color) lines(param$tms, param$plugEst$X[7,] + 1.96 * sqrt(param$plugEst$covariance[7,7,]),type="s",lty=2, col=diff_color) lines(param$tms, param$plugEst$X[7,] - 1.96 * sqrt(param$plugEst$covariance[7,7,]),type="s",lty=2, col=diff_color) abline(a=0,b=0,col=2) # Add legend legend("topleft", legend = c("Males", "Females", "Difference"), col = c(male_color, female_color, diff_color), lty = 1,bty="n") # Plot with colors and labels plot(param$tms, param$plugEst$X[4,],type="s",ylim=c(-0.2,0.9),main="Cum.inc. death", ylab="",xlab="Years", col=male_color) lines(param$tms, param$plugEst$X[4,] + 1.96 * sqrt(param$plugEst$covariance[4,4,]),type="s",lty=2, col=male_color) lines(param$tms, param$plugEst$X[4,] - 1.96 * sqrt(param$plugEst$covariance[4,4,]),type="s",lty=2, col=male_color) lines(param$tms, param$plugEst$X[6,],type="s", col=female_color) lines(param$tms, param$plugEst$X[6,] + 1.96 * sqrt(param$plugEst$covariance[6,6,]),type="s",lty=2, col=female_color) lines(param$tms, param$plugEst$X[6,] - 1.96 * sqrt(param$plugEst$covariance[6,6,]),type="s",lty=2, col=female_color) lines(param$tms, param$plugEst$X[8,],type="s", col=diff_color) lines(param$tms, param$plugEst$X[8,] + 1.96 * sqrt(param$plugEst$covariance[8,8,]),type="s",lty=2, col=diff_color) lines(param$tms, param$plugEst$X[8,] - 1.96 * sqrt(param$plugEst$covariance[8,8,]),type="s",lty=2, col=diff_color) abline(a=0,b=0,col=2) # Add legend legend("topleft", legend = c("Males", "Females", "Difference"), col = c(male_color, female_color, diff_color), lty = 1,bty="n") ``` [^fn1]: [Transforming cumulative hazard estimates] (Biometrika, 2018). [^fn2]: [On null hypothesis in survival analysis] (Biometrics, 2019)